Polyglot: 3D Language Embedding Visualization - Media-making Statement
Hongwei (Henry) Zhou

Overview

Polyglot is a web application for visualizing language embeddings in a 3D space. Language
embeddings are typically high-dimensional vector representations of the syntactic and semantic
content of words. This application allows examination of a particular word embedding data,
reduced to 3D using UMAP. In addition to 3D navigation of the scatter plot space, the application
also uses colors to enable two ways of exploring the dataset: (1) coloring based on the result of
Monte-Carlo Physarum Machine (MCPM) and (2) coloring based on each word's part-of-speech
tag.

This is a visualization tool developed during my second year as a PhD student at UCSC. It
eventually became a part of my master thesis. In this media-making statement, | will divide the
development history roughly into three phases: the beginning phase, the linguistic exploration
phase, and the structural comparison phase. Each phase was propelled by different needs that
arose and was defined by the features added in response to those needs. The beginning was
propelled by our (Oskar Elek’s and my) desire to have an interactive visualization tool for the
Slime Mold in the first place. The linguistic exploration phase is characterized by features added
based on the feedback by a linguistic professor Pranov Anand. The structural exploration phase
was motivated by Adam Smith’s desire to examine structural invariance in dimensionality
reduction algorithms when | was putting together my master thesis.

Word Embeddings

Word embeddings, such as Word2Vec, GloVe, and ELMo, are vector/points generated by an
algorithm. The key computational idea is to transform topological information contained in a
relational graph to geometric information encoded in a D-dimensional vector (‘'embedding’)
space. Embeddings have a number of interesting algebraic properties: most importantly, the
contextual similarity of the embedded tokens is transformed into geometric proximity in the
embedding [6, 7]. Because they explicitly consider the token's context [8, 9], it has been shown
that embeddings contain information that can be processed to extract a range of useful
properties: clustering by token usage [10, 11] as well as different kinds of syntactic information
[10, 12, 13]. Thus, there is the promise that this kind of method could provide high-dimensional
representations that encode a large manner of relations implicitly without having to hand-code
them in advance.

But it's impossible to visualize embedding in its original format because of high dimensionality.
Dimensional reduction techniques are applied so that the points can be represented in either 2D
or 3D space. But reducing its dimensionality also means that much encoded information is lost.
Visualizing embedding typically means getting a brief impression of its structure by proximity of
different clusters. It can only remain brief impressions because of the loss of information, which
means that information retrieval is not salient in lower-dimensional representations.

https://github.com/CreativeCodingLab/Polyglot

Applying Slime Mold to Word Embedding

MCPM, aka. Slime Mold, is an agent-based model inspired by the self-organizing characteristics
of slime mold, initially studied by Jeff Jones [1]. It was then modified by Burchett et al. with an
additional Monte Carlo decision-making process, and was shown to be empirically accurate in
predicting the pattern of the cosmic web of the universe [2, 3], where it has successfully
recovered the theoretically predicted lamentary patterns over sparse galaxy data. MCPM can be
understood as bio-inspired modeling of optimal transport networks. The mathematics of optimal
transport [4, 5] is based on the principle of least effort, which applies to phenomena ranging
from particle and light transport to the behavior of living beings.

An intuitive way to think about MCPM is that it discovers structures by spawning a swarm of
agents. The agents navigate by following the trace - a density field in a 3D grid, implemented
with a 3D array. The value within each cell of the trace determines how much the agent is
attracted to it. Thus, the agent’s travel trajectory is steered by the density value in the trace. The
density is determined by two things: (1) When a “food”, or a “galaxy”, or “word embedding” is
placed down, it contributes significantly to the density value and (2) Each agent deposits a small
amount of density value into the trace as well. A standard use of MCPM is to spawn a swarm of
agents, and run the simulation until the agents’ travel paths eventually stabilize, forming
discernable highways and roads. After stopping the simulation, the trace is then extracted as the
result. The below figure demonstrates the impact of trace navigation. The left shows the
exploration path for unguided agents, while the right shows the path while agents are guided by
the trace. The agents are spawned at the same starting position (blue dot) and their trajectories
are marked in gray. They are set out to discover the green data points (food/galaxy/word
embedding), which are marked in red when discovered.

One can see the impact of the trace guiding (right), in comparison to unguided, purely random
search (left). With trace guiding, most agents follow a few distinct paths to discover the
surrounding token clusters. Without guiding, the random-walk process ends up being equivalent
to the nearest neighbor search: the likelihood of a token being discovered decreases as a
square of distance from the origin, as the agents become more spread-out. The two marked
regions A and B in the right subfigure illustrate this contrast: from the random walk density we
see that region A is more thoroughly explored than B in spite of both having a similar Euclidean
distance from the source. This translates to A being closer within the paradigm of optimal
transport.

What originally motivated us to apply MCPM to explore low-dimensional word embedding data
is precisely this structure identification capability through connectivity of the point data. What is
notable here is how connectivity differentiates itself from euclidean-distance-based structural
identification. We’ll explore the low-dimensional results generated by a dimensionality reduction
algorithm called UMAP [15]. It organizes higher dimensional points into filaments and clusters
based on their proximity in the higher dimension, and then tries to fit those filaments and
clusters in lower dimension. Looking at the illustration below, point A has roughly the same
distance to B and to C. However, B is considered closer to A if we consider the connectivity of
the data, which makes MCPM a salient tool for exploring structures in lower-dimensional data.

This project is slightly different from MCPM because the trace is fixed. We'll call the agent
swarm MCPM probe agents instead because it does not deposit into the trace. The pipeline of
combining MCPM and word embedding is the following: (1) MCPM simulation over word
embedding data, extract trace once it stabilizes, (2) Use MCPM probe agents by spawning
agents on top of a single token (we’ll call this token anchor point). The agents will follow the
extracted, fixed trace. When another word embedding is close enough, a counter for that word
embedding is incremented. (3) We extract the counter for each word embedding. The higher the
counter, the more similar to the chosen anchor point that word embedding is.

Initial Inspiration and Implementation
The visualization figure in the above section was created by running a Python script. The
downside is rather obvious: we need to decide where the agent spawns and the view window by

modifying the script, which does not provide us with immediate visual feedback. In addition, this
view cannot tell us which word tokens are discovered (red). It became obvious that a new
visualization tool is needed for us to explore the MCPM simulation result further. One major
inspiration is the Tensorflow Embedding Projector. The screenshot is provided below,

It is a rather intuitive tool to explore word embedding in 3D space: mouse control to navigate
within the 3D space, including camera rotation, translation and scaling. In addition, the mouse
pointer hovering over a point reveals the content of that token.

We decided on using Three.js to implement our own version. Because of the rendering and
camera control library already provided, the initial version works very similarly to Tensorflow
Embedding Project.

We’re interested to use this tool to examine the MCPM probe result. As mentioned in the
pipeline above, the probe result is relative to the anchor point we choose (the point to spawn
probe agents on). So we need to solve two problems: (1) How do we represent probe results
aka. the counters? (2) How do we switch between different anchor point results? The result
screenshot is shown below on the left figure.

https://projector.tensorflow.org/
https://threejs.org/

For the probe result problem, we decided to map the counter to a color spectrum - from bright
pink to dark blue, with a slider that controls the interpolation curve. For the switching between
anchor points problem, | decided to color the anchor points yellow. When the user double clicks
on them, the system will load the probe result for that anchor point. Additionally, | added a
feature to help users select the anchor points, because the points can be rather cluttered. When
users hold down the left Shift key, all non-anchor points are dimmed and the mouse pointer can
only select the anchor points. A screenshot demonstrating this feature is shown on the above
right figure.

From Local to Global

At the beginning, the tool only rendered points close to the anchor point. The original thinking
was that since there are half of a million points, it would waste space to store the counters of all
the word embedding for every anchor point. So the data format is the following:

[id, x, y, z, word_string, counter]

Each probe result for an anchor point is its own file, with around 5000 lines of data in the above
format. As one can see, it stores all the information needed to render that particular point.

The downside is that the user will always get a local view of the data, never the overall shape of
the data itself. In addition, the user cannot see all the anchor points they can jump to. Their
options are limited to the anchor points discovered within the local probe result. This might
make an interesting game idea, but not for data visualization.

Eventually, | decided to restructure the entire data loading pipeline. The position data and word
string are stored in a single file. The tool loads all of it on startup. Each anchor point probe still
results in its own file. But the data format becomes the following:

[id, counter]

| use the id, which is also the index for the word embedding, to extract the positional and word
string data. At the end, the tool can show all of the dataset, whether the points are discovered
during probing or not. | added a Lowest Connect slider for the user to control how much they
can see. When its value is 0, the tool shows all the points. A figure demonstrating the difference

is shown below.

-

Lowest Connect = 8000 sLowest Connect = 5000

"'Lowest Connect = 2000 * Lowest Connect = 0":

Pranov Anand: “l wish | could go back to where | was, also it would be nice to show the
distribution of different word categories.”

The above is not an actual quote, but does represent the feedback we received. Pranov Anand
is a linguistic professor whom we consulted several times on this project. After finishing a usable
version of the tool, we shared it with him to see if a linguist would find it interesting or useful.
Having significantly less 3D navigation literacy, Pranov struggled quite a bit trying to make
sense of the camera control, and to grasp the shape of the 3D scatter plot. Rotating the camera
seemed like a confusing morphing of the screen that he found overwhelming. This was
something that we unfortunately did not consider and could not address properly, because 3D
navigation is such a central part of our tool.

Even so, Pranov still spent quite a bit of time exploring the dataset. He found some interesting
clusters in the dataset that allowed him to reason about how the algorithm and the dataset
works. But because the dataset is so large, it was very difficult to reproduce the discovery by
relocating where the clusters are. The solution we came down to was: (1) When hovering over
points, the id of the point will also be displayed, (2) Have a dropdown menu so the user can
quickly switch between anchor points, ordered by the id number. The intended solution is that
the user can identify the anchor point close to where the discovery was by remembering the id
of the anchor point, and switch to it from the dropdown menu to recover its position. These are
rather quick and hacky solutions. A more sophisticated solution would be to save the location
somehow and allow naming and note-taking. The figures below show the word embedding
display with id (left) and the dropdown navigation menu (right).

Select Anchor
135 point_NOUN -
138: like_ADP

141: live_VERB

147: get_VERB

148 form_VERB

149- order_NOUN

152 feature_VERB

155: show_NOUN

163 last_ADJ

172: back_ADV

173: title_NOUN

174: final_ADJ

245286: Anthony: :Jackson_PROPN

The next significant feature Pranov proposed was to visualize the part-of-speech tags. Since the
word embedding already has its part-of-speech in the string value, it was simply mapping all the
part-of-speech to different colors, and adding a button to switch between different coloring
modes. The figure below shows different parts of the same dataset illuminated as filtered by
part-of-speech tags.

Adjective

4

" Proper Noun

Adam Smith: “l wish | could know that the structure is somewhat stable.”

Fast forward to late summer of 2021, | started taking my interest in humanities seriously and
decided to pursue it in the upcoming academic year. But | did not want all the work going into
this project gone to waste. So | tried to write this work into my master thesis. Adam Smith, being
familiar with embeddings and data visualization, was a natural pick for my second reader.

One of the biggest concerns raised by Adam was regarding the stability of the dataset itself. The
original word embedding was provided in 300 dimensions. To get a scatter plot representation in
3D dimension, a dimensionality reduction algorithm called UMAP was used. The basic idea of

the algorithm is trying to preserve local distance relations between points by putting them closer
together in the lower dimensional space. This method usually sacrifices global relationships in
order to preserve close neighbor relations. The concern regarding the stability of the dataset is
that the operation of UMAP is stochastic — the output result is different each time. This is a
major threat of validity to any claim from our MCPM probe results in the lower dimension. We
need to identify some invariance across different outputs to show that some of our discoveries
map onto the original dataset as well.

The work followed was not major features added to the visualization tool, but rather using the
tool extensively to identify structures across multiple runs. | ran the UMAP reduction on the
same dataset under the same parameter and added an additional dropdown menu so the tool
can switch between the two different datasets. The result of comparing the two datasets
became a big subsection in my master thesis. This is framed as not only finding the consistent
patterns in the reduced dataset, but also demonstrating the usefulness of Polyglot.

The below figure shows one of our discoveries in two different runs (W2V-300k-1 and
W2V-300k-2). The global structure of UMAP-reduced dataset can be roughly divided into three
different sections: Concentration, Noun Extension and Proper Noun Zone. The Concentration is
a high density of commonly-used words. It consists of words with a variety of part-of-speech
categories like noun, verb, adjective and adverb. The Proper Noun Zone consists of a wide
spread of proper nouns (colored orange but dimmed in the figure), from location names, to
scientist names and comic book villains. The Noun Extension consists of a large area of nouns
(with some adjectives and adverbs) separate from the Concentration. One of the interesting
features is that the words in the Noun Extension zone are much more scientific. The
visualization marks a path of samples, going from the Concentration to the Noun Extension. As
one can see, the word transitions from commonly used words to specialized words. Identifying
structural invariance strengthens the observations made by Slime Mold in the low-dimensional
word embeddings, which | will briefly talk about in the Conclusion in Master Thesis. The word
embeddings in the reduced dimension have a degree of consistency that | argue is present in
the original dimension, rather than purely artifacts created by dimensionality reduction.

W2V-300K1 °

Proper. Noun Zone

also_ADV
result_NOUN
earth-size_ADJ
airglow_NOUN
high_purity_ADJ
tetrocide_NOUN
methyl NOUN
purine_NOUN
trna_NOUN
chlorhyll_NOUN
coevolutionary_ADdJ
interbreeding_ NOUN
cold-water_NOUN
toadstool_NOUN

hoverfly NOUN
trypeta_ NOUN

Conclusion in Master Thesis

Noun Extension

W2V-300k-2

Concentration(.

Noun Zone.

past_ADJ
mark_VERB
lead_VERB
fire NOUN
supply_ NOUN
wind_VERB
hundredweight_ NOUN
photon_PROPN
free-space_ADdJ
thermodynamics_NOUN
neumann_PROPN
monomeric_ADdJ
encode_VERB
genome-wide_ADdJ
phencyclidine_ NOUN
misclassification_NOUN

In the Word Embedding section, | point out that information retrieval is not salient in
lower-dimensional representations because of loss of information during dimensional reduction.
In my master thesis, | use cosine distance in the original dimension as the benchmark, and
compare the structural identification result by MCPM to the result by euclidean distance. | find
that the structure identified by MCPM agrees with the benchmark Cosine result more than
Euclidean. This shows that UMAP utilizes both euclidean distance as well as connectivity
between data to conduct dimensionality reduction, both of which MCPM is sensitive to.

Besides enabling a way to visualize structure more similar to the original representation, the
visualization tool also helps identify invariance, thus strengthening the claims in the previous
paragraph, because it shows that there is consistent structure in the low-dimensional data that
is preserved through the dimensionality reduction process.

Bibliography

[1] Jeff Jones. Characteristics of pattern formation and evolution in approximations
of physarum transport networks. Artificial life, 16(2):127-153, 2010.

[2] Joseph N Burchett, Oskar Elek, Nicolas Tejos, J Xavier Prochaska, Todd M Tripp,

Rongmon Bordoloi, and Angus G Forbes. Revealing the dark threads of the cosmic
web. The Astrophysical Journal Letters, 891(2):L35, 2020.

[3] Sunil Simha, Joseph N Burchett, J Xavier Prochaska, Jay S Chittidi, Oskar Elek,
Nicolas Tejos, Regina Jorgenson, Keith W Bannister, Shivani Bhandari, Cherie K
Day, et al. Disentangling the cosmic web towards FRB 190608. arXiv preprint
arXiv:2005.13157, 2020.

[4] Cedric Villani. Optimal Transport: Old and new. Springer, 2009.

[5] Gabriel Peyre, Marco Cuturi, et al. Computational optimal transport: With applications
to data science. Foundations and Trends® in Machine Learning, 11(5-6):355-607, 2019.

[6] Tomas Mikolov, llya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In Ad-
vances in Neural Information Processing Systems, pages 3111-3119, 2013.

[7] Andy Coenen, Emily Reif, Ann Yuan, Been Kim, Adam Pearce, Fernanda Vi'egas,
and Martin Wattenberg. Visualizing and measuring the geometry of BERT. arXiv
preprint arXiv:1906.02715, 2019.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[9] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and llya
Sutskever. Language models are unsupervised multitask learners. OpenAl Blog,
1(8):9, 2019.

[10] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What
we know about how BERT works. arXiv preprint arXiv:2002.12327, 2020.

[11] Gregor Wiedemann, Steffen Remus, Avi Chawla, and Chris Biemann. Does BERT
make any sense? Interpretable word sense disambiguation with contextualized
embeddings. arXiv preprint arXiv:1909.10430, 2019.

[12] Yongjie Lin, Yi Chern Tan, and Robert Frank. Open sesame: Getting inside bert’s
linguistic knowledge. arXiv preprint arXiv:1906.01698, 2019.

[13] John Hewitt and Christopher D Manning. A structural probe for finding syntax in
word representations. In Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4129-4138, 2019.

[14] Leland Mclnnes, John Healy, and James Melville. Umap: Uniform manifold ap-
proximation and projection for dimension reduction, 2018.

[15] Leland Mclnnes, John Healy, and James Melville. Umap: Uniform manifold ap-
proximation and projection for dimension reduction, 2018.

