
A Hybrid Search Agent in Pommerman - Technical Statement
Hongwei (Henry) Zhou

Overview
Various tree search algorithms, such as Monte Carlo Tree Search (MCTS), assume and require
the existence of forward models to advance the state of the game. However, not all games
support fast computing forward modeling due to factors such as complex game rules that
require heavy computation to advance to the next state.

This is a class project that I worked on in a Game AI class with two other people. In this work,
we try to explore the potential of a high-performing agent in a resource-intensive, high frame
rate and adversarial game environment. Specifically, the main work was searching for a
balanced solution between using heuristics and tree search algorithms in the Pommerman
framework. Our solution enhanced the agent’s performance with tree search algorithms
because for certain problems it is easier to express the goal rather than the strategies to reach
the goal. The notable technical work here is (1) a novel blend between rule-based approach and
tree-search-based approach and (2) testing different heuristics for tree search.

Pommerman Framework
Pommerman is a variation of the game Bomberman. The game is played in a randomly
generated 13x13 grid where four agents are trying to eliminate each other. Each agent starts in
a separate corner with a single bomb and can choose one of six actions: STOP, UP, LEFT,
DOWN, RIGHT, BOMB. A STOP action will be returned if no action is returned within 100
milliseconds. When an agent places a bomb and that bomb explodes, the agent gains another
bomb to use. Once placed, a bomb takes about 25 ticks to explode and its explosion can
eliminate agents including its owner.

The above figure shows a Pommerman level. In addition to the four agents (red, blue, pink and
green tiles), the map contains wooden (brown tiles) and rigid walls (gray tiles) with a guaranteed
accessible path to each agent. Rigid walls are indestructible and impassible, while wooden walls
are impassible until destroyed by bombs. There is a 50% chance that destroying a wooden wall
reveals a power up item. The power ups are Extra Bomb (Increase agent’s ammo by one),
Increase Range (Increase agent’s blast length by one), Can Kick (Allow agent to kick bombs in

https://github.com/MultiAgentLearning/playground


its moving direction), and Skull (A random harmful power up). There were multiple game modes
available. For our work, we focused mainly on Free for All, where all four agents are trying to
eliminate each other.

Heuristic Agent
The Pommerman framework provides a simple gameplay agent that is completely rule-based.
This agent is an efficient player already. It is able to explore the map, place bombs to clear out
the wooden walls, get upgrades, and evade bombs when appropriate. The most standout
downside of this agent is its attack behavior, where it simply places a bomb immediately when it
sees an agent, lacking any strategic insight. It uses the Dijkstra algorithm for path finding. We’ll
call this provided agent Simple Agent.

We first started organizing and adding additional logic to the existing code. We grouped different
actions together and eventually came down to three different states ordered in descending
priority: Evade, Attack and Explore. Our usage of the word “state” does not imply that this is a
finite state machine. The code does not recognize the previous state it was in before. It simply
runs conditional testings from the beginning to end every time. We’ll call it the Heuristic Agent.

The Evade state is entered when any direction the agent can go (STOP, UP, LEFT, DOWN,
RIGHT) is in range of a dangerous bomb. The bomb is defined as dangerous when its tick
(countdown to explosion) is less than 5 + 2 * bomb_count. The bomb_count is the number of
bombs surrounding the agent. The rational is that the more bombs surround the agent, the
earlier the agent needs to get into the Evade state, because it might take more time for the
agent to escape.

When in the Evade state, the agent simply travels to the closest safe position using the Dijkstra
algorithm. One downside of this method is that the agent will simply stop when any of its
adjacent spaces is in range of a dangerous bomb. A better behavior, instead of stopping once
out of the bomb range, is continuing to explore the safe areas.

The Attack state is entered when the Evade state condition fails, and the agent possesses
bombs and is within the distance of 6 spaces from an enemy. During the initial stage, the agent
simply places down bombs when the bomb explosion will cover the enemy’s current position.
This is a rather poor attack behavior because it is too trigger happy. The bomb is not
strategically placed to trap the enemy so the enemies tends to be able to escape the bomb.

The Explore state is entered when the two above fail. The agent will simply prioritize getting
reachable upgrades, and try to eliminate the wooden walls when there is one in the way.
Combining with the Evade state, the agent tends to act like a mine digger, where it places down
bombs next to wooden walls and stays in a safe location to wait for the wooden walls to get
cleared out.

The Heuristic Agent already managed to achieve a good win rate against the Simple Agent. A
large reason comes from the condition for the Evade state. Originally, the Simple Agent



considers any bomb in range to be dangerous, while our Heuristic Agent only considers a bomb
dangerous when it’s below 5 + 2 * bomb_count ticks from exploding. This allowed the Heuristic
Agent to stay in the Attack state longer and to be more aggressive.

Problems with Heuristic Agent
One of the reasons the attack behavior is so primitive is because there is no obvious rule-based
solution to attack strategies. In this game, the bomb placement is dependent on the position of
the enemy and the shape of the terrain. The ideal move is to use bombs to trap the the enemy
agent, since bombs block movement once placed. But this is a rare situation. Most of the time,
placed bombs do not form perfect entrapments. It is not obvious how to hardcode good bomb
placement strategies.

Another problem is with the Evade state. The agent does not consider its maneuver when it’s
surrounded by bombs. Take the example in the figure below

The black squares represent bombs and the numbers indicate the ticks left before explosion.
For the Heuristic Agent, there is no solution to this situation because there is no reachable safe
location. But we can see that the agent can utilize the difference in bomb tick to avoid death. If
the agent rests in the right position, the top left and bottom left bombs will explode first, letting
the agent escape. One possible solution is to have different spaces ranked by the degree of
danger based on bomb ticks. But we chose a different approach.

The above two problems do not have obvious rule-based solutions, because rule-based
solutions determine actions based on the current state of the board. What is needed is for an
agent to determine actions based on hypothetical future states. This is where we decided to
implement Monte Carlo Tree Search to solve the above two problems in one stroke.

Monte Carlo Tree Search
To enable tree search, we needed to implement a forward model, which is a function that
returns the next frame of the game after we provide a hypothetical action for our agent. One
problem was to determine the behavior of the enemy agent. We decided to implement an agent
that randomly takes a movement action (STOP, UP, LEFT, DOWN, RIGHT). The main
motivation was that, for the Attack state, it’s sufficient to assume that the enemy will move
randomly, so we can determine the best bomb placement to restrict its movement.



We decided to implement Monte Carlo Tree Search, which is a combination of Monte Carlo
Method and Tree Search. Monte Carlo Methods (MCM) [1] are referred to as a class of
algorithms that aims to solve a problem by sampling random values and approximating the
mathematical property behind the said problem. It is widely adopted in a range of domains. Most
notably this technique is combined with tree search to form an algorithm called Monte Carlo
Tree Search (MCTS) [2]. MCTS finds the optimal decision in a given domain by randomly
sampling the decision space and building a search tree accordingly.

Compared to traditional tree search algorithms such as Breadth First Search (BFS) and Depth
First Search (DFS), MCTS does not require exhaustive search in either breadth nor depth. This
is because of two reasons: (1) MCTS replaces end conditions with scoring functions that
determine the quality of each hypothetical state, which we’ll discuss more in the Scoring
Function section (2) based on the scores of explored states, MCTS has a selection function
that determines which branch of the search space is more worthy to explore. We’ll discuss
selection functions further in the Flat Monte Carlo Search section.

Problem with Forward Model
Having a forward model, we could evaluate hypothetical future game states. But as mentioned,
the Pommerman environment enforces a 100 millisecond limit for decision making. On average,
advancing a game by one frame takes 1 ms and copying a game state takes 2 ms on an
i7-6700HQ CPU. This makes certain end conditions or scoring functions unrealistic for tree
search. For example, we cannot define our desirable condition as when the enemy is eliminated
because a bomb takes about 25 ticks/frames to explode. We need to define scoring functions
with more immediate returns, which means that the quality of the state is close to immediately
accessible after an hypothetical action is taken.

Scoring Functions
For the Evade state, the scoring is given below:

𝑆𝑐𝑜𝑟𝑒
𝑒𝑣𝑎𝑑𝑒

= 100 −
𝑖

∑ 𝑝
𝑖

· 25 ·
11 − 𝑡𝑖𝑐𝑘

𝑖

10

where denotes each bomb, evaluates two conditions: (1) if bomb ’s explosion can reach the𝑖 𝑝
𝑖

𝑖

agent and (2) if bomb has tick less than 10. returns 1 if the above two conditions are𝑖 𝑝
𝑖

satisfied and 0 otherwise, denotes the tick rate of bomb . The score starts as 100 and only𝑡𝑖𝑐𝑘
𝑖

𝑖

considers bombs with ticks under 10. The lower the tick of a bomb, the greater the deduction to
the score. This solves the problem stated in the previous section, as the value of a hypothetical
state is evaluated based on the ticks of the bombs.

The scoring function for the Attack state is a little more complicated. The basic idea is that we
want to place bombs in a way that covers as much of the enemy’s navigable areas as possible.
The scoring function only focuses on one single enemy target. The state scoring starts with 0
and accesses the target’s surroundings by the following:



𝑆𝑐𝑜𝑟𝑒
𝑎𝑡𝑡𝑎𝑐𝑘

= 100 · (1 − 𝑒𝑚𝑝𝑡𝑦𝑆𝑎𝑓𝑒𝐴𝑟𝑒𝑎
𝑡𝑜𝑡𝑎𝑙𝐴𝑟𝑒𝑎 )

indicates the area within a given range (in this case the range is 2, therefore this𝑡𝑜𝑡𝑎𝑙𝐴𝑟𝑒𝑎
value is always 13, as shown below) and is safe and traversable spaces within𝑒𝑚𝑝𝑡𝑦𝑆𝑎𝑓𝑒𝐴𝑟𝑒𝑎
the total area. Let’s take the below example:

The Agent square indicates the enemy target to be eliminated. The given range for is𝑡𝑜𝑡𝑎𝑙𝐴𝑟𝑒𝑎
2, so we only look at spaces within the distance of 2 around the enemy. Therefore, the

is 13. The black square is the bomb, and the gray squares are within the explosion𝑡𝑜𝑡𝑎𝑙𝐴𝑟𝑒𝑎
range of the bomb. The black squares are the unreachable spaces due to walls, bombs or other
agents. The is the area of the white squares, where the enemy can reach and𝑒𝑚𝑝𝑡𝑦𝑆𝑎𝑓𝑒𝐴𝑟𝑒𝑎
stay safe. In this example, the score for this state is . Higher scores mean100 · (1 − 4

13 ) ≈ 69

fewer reachable safe spaces for the enemy agent.

Flat Monte Carlo Search
However, having more immediate scoring functions does not completely solve the problem with
expensive forward models. To see how we solve this problem, we need to understand how
MCTS works. Standard MCTS has four stages: Selection, Expansion, Simulation and
Backpropagation. The key to understanding these stages is to distinguish between hypothetical
future states that are remembered and hypothetical future states that are played. The algorithm
stores a tree structure with all remembered future hypothetical states. The selection stage
chooses one leaf node within this tree structure. The expansion stage chooses a random child
of that leaf node and appends it to the tree structure (new hypothetical states are remembered).
The simulation then randomly plays from that appended node until a certain end condition is
met. During this stage, the future hypothetical states are played but not remembered, thus not
appended to the tree structure.



Once the simulation ends, the resulting hypothetical state is evaluated with a scoring function.
Each remembered game state in the tree structure stores two additional values: (1) the average
of all its simulated/played scores and (2) how many times it’s been visited during the selection
stage. In the backpropagation stage, the resulting score of the simulation/play updates the two
values of all the nodes in that specific branch, all the way from the leaf back up to the root node
(hence backpropagation).

As mentioned above, creating a new game state copy takes 2 ms. This operation is needed for
the expansion stage because a new state copy is created to append to the tree structure. To
shave this time off, we decide to implement Flat Monte Carlo Search (FMCS), which only
expands on the root node. The tree structure only has a depth of 1.

The last element of our solution is about the selection stage. How does the MCTS choose which
remembered state to start the simulation/play? The standard solution is the UCB1 equation:

𝑈𝐶𝐵1
𝑖

= 𝑋
𝑖

+ 𝐶
2·𝑙𝑛𝑁

𝑖
𝑝

𝑁
𝑖

where is the exploitation term of the equation and the is the exploration term. The𝑋
𝑖

2·𝑙𝑛𝑁
𝑖
𝑝

𝑁
𝑖

exploitation term is the average of the simulated scores. In exploration term, is the parent 𝑁
𝑖
𝑝

visit count, and is the current node visit count. is a constant that balances the exploitation𝑁
𝑖

𝐶

and exploration. The easy way to understand this is that if is low, the equation values the𝐶
average score. As a result, the nodes with higher simulated average scores are chosen more -
hence exploitation. If is high, the equation values nodes less visited in the tree structure -𝐶
hence exploration.

Result / Conclusion



The graph shows the Win/Loss/Tie rate of the tested agent against 3 Simple Agents for 300
games.

● The Simple agent is the rule-based agent provided in the Pommerman framework.
● Both BFS and MCTS agents are tree search agents properly implemented.
● The Heuristic agent is the refined rule-based agent described in the Heuristic Agent

section.
● The rest are Flat Monte Carlo Search agents described in the Flat Monte Carlo Search

section with different selection functions.
○ The Random Selection agent randomly selects the child for simulation.
○ The UCB1 agent uses the full UCB1 equation with a value of 25.𝐶
○ The Explore agent only selects nodes based on the exploration term in the UCB1

equation.
○ The Exploit agent only selects nodes based on the exploitation term.

As indicated in the result, Exploit agent and UCB1 agent perform considerably better than other
agents. I hypothesize that Flat Monte Carlo Search works because the nature of the game does
not require too much long-term planning. In addition, the flat search approach allows more
simulation to be done. As a result, the sampling manages to get closer to the ground truth (the
actual best action to take in that moment).

Bibliography
[1] Christian P Robert. 2004. Monte carlo methods. Wiley Online Library.

[2] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. 2012. A survey of monte carlo tree search methods.



IEEE Transactions on Computational Intelligence and AI in games 4, 1 (2012), 1–43.


